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ABSTRACT

A micron n + - n - n + silicon diode is simulated via the hydrodynamic model for carrier

transport. The numerical algorithms employed are for the non-steady case, and a limiting

process is used to reach steady state. The novelty of our simulation lies in the shock capturing

algorithms employed, and indeed shocks, or very rapid transition regimes, are observed

in the transient case for the coupled system, consisting of the potential equation and the

conservation equations describing charge, momentum, and energy transfer for the electron

carriers. These algorithms, termed essentially non-oscillatory, have been successfully applied

in other contests to models the flow in gas dynamics, magnetohydrodynamics and other

physical situations involving the conservation laws of fluid mechanics. The method here is

first order in time, but the use of small time steps allows for good accuracy. Runge-Kutta

methods allow one to achieve higher accuracy in time if desired. The spatial accuracy is of

high order in regions of smoothness.
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1. INTRODUCTION

A micron n+ - - n + silicon diode is simulated via the hydrodynamic model for

carrier transport. The numerical algorithms employed are for the non-steady case,

and a limiting process is used to reach steady state. The novelty of our simulation

lies in the shock capturing algorithms employed, and indeed shocks, or very rapid

transition regimes, are observed in the transient case for the coupled system, con-

sisting of the potential equation and the conservation equations describing charge,

momentum, and energy transfer for the electron carriers. These algorithms, termed

essentially non-oscillatoiy, have been successfully applied in other contexts to model

the flow in gas dynamics, magnetohydrodynarnics and other physical situations in-

volving the conservation laws of fluid mechanics. The itliod here is first order in

time, but the use of small time steps allows for good accuracy. Punge-Kutta meth-

ods allow one to achieve higher accuracy in time if desired. The spatial accuracy is

of high order in regions of smoothness.
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The conservation laws for charge, momentum, and energy for each carrier can

be obtained by taking the first three moments of the Boltzmann equation [see

Blotekjaer [3], Rudan and Odeh [23], and Cercignani [4]]. This will result in a

system of five equations with fourteen variables in three dimensional space. These

variables are defined by particle density n. velocity v, internal energy el, heat flux

q, and symmetric pressure tensor p. In order to close the system, we assume that p

and q are defined via (cf. Gardner, Jerome and Rose [9]),

p =kbnT bij qj=-Kn9x
m m

where kb is the Boltzmann- constant, m is the mass of one carrier, and T is the

carrier temperature assumed to be scalar. The moment system also includes aver-

age collision terms, denoted C,, CP, and C,, respectively, which describe the rate

of change of mass, momentum and energy. They will account for recombination

regeneration processes, electron-electron and electron-lattice collisions, and transfer

of energy between electrons and - ce. Their explicit form, for the application

considered here, is given by

CP = (P := carrier momentum density)

CW- 2nkTo) (w := carrier energy density)

Here we use the following empirical relations [see [9]] for relaxation times and the

thermoconductivity constant:

mPuoTo 3pokbTTo rp 3pk2To

e T 2ev'(T + To) 2 2e

-- ma mill a alll ~ lm - =i i•2



where To is the temperature of the lattice (possibly a function of space), /po is the

electron mobility, e the charge of an electron, and v, is the saturation velocity. We

shall discuss the foundations of these relations below. We note here, for consistency,

that eI is proportional to T, and in the following section we shall define P and w,

and describe the equations of the hydrodynamic system and the system boundary

conditions.

The recent literature, pertaining to the device model simulated here, includes,

in addition to [231 and [91, the studies by Baccarani and Wardeman [1], by Odeh,

Rudan, and White [19], and by Fischetti and Rudan [8]. In each case, velocity

overshoot effects are simulated, which cannot be recovered from the standard drift-

diffusion 'model. As is now widely understood, the effect is strongly dependent on

the semiconductor, and is much more pronounced in gallium arsenide than silicon,

for example. Since velocity overshoot is related to variations in termperature and

electric field, the energy equation in the hydrodynamic model thus allows for the

heat flux term q governed by the Wiedeniann-Franz law [2], (note that rn is the

conductivity in this law) and the coupling to the potential equation is essential in

this case. Moreover, the momentum equation plays the role of a refined constitutive

current relation. Rather than seeking modifications of the classical current relation

by the incorporation of relevant physical effects beyond critical values of parameters

such as I ' (see [1] for such values and Thornber [30] for a sophisticated discus-

sion of such augmented relations), we find here that current is induced by variable

concentration and momentum within the system.
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The validity of the assumptions concerning the collision terms Cp and C,

termed phenomenological approach in [71, has been discussed by Nougier et al. [18],

where agreement within 10%, for n type silicon and p type germanium, has been

demonstrated, relative to a direct simulation of the Boltzmann equation, for a wide

range of electric fields and lattice temperatures. Further assumptions employed

in the model, also used in [1], [23], [19], and [9], are the existence of a scalar

quantity for the temperature tensor, constructed from the random velocity, and

the parabolic representation for the energy, in terms of its kinetic and thermal

components. Following Hess and Sah [131, and [1], we have assumed a constant

diffusivity coeficient, which is consistent with the assumptions of constant effective

mass, and scalar temperature and diffusivity. This has the effect, via the Einstein

relation, of describing the electron mobility as an inverse temperature dependent

function.

Thus, in this approach, mobility does not directly depend upon velocity. This

mobility relation explicitly dictates the expression for the temperature dependent

momentum relaxation times expressed above, as well as the choice, exponent =

-1, in the Wiedemann-Franz law for the thermal conductivity. The temperature

dependent energy relaxation time is deduced by using the empirical expression for

the mobility, presented by Caughey and Thomas [5], so as to express drift velocity

in terms of temperature. The resulting expression is therefore empirical. The

steady-state character of both the resulting relaxation time expressions has been

emphasized in [1]. Since we simultaneously obtain information for the transient
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analysis, the latter results must be interpreted provisionally with respect to -rp and

The earliest theoretical predictions of velocity overshoot appear to be due to

Rees [20], for germanium, and to Ruch [22], for silicon and gallium arsenide. Fur-

ther studies by Shur (26] and Maloney and Frey (16] gave a detailed qualitative

understanding of the phenomenon; in particular, it was understood that the physi-

cal principle underlyi.-g velocity overshoot is the finite time taken before the energy

of the carriers reaches equilibrium with the new field, as they traverse a region of

rapidly varying electric field. These ideas, and the relation to ballistic transport,

have been discussed and critiqued by several atthors (see Shur and Eastman [27]

and Hess (121).

Increasing sophistication of the model followed. While [26] and [16] were based

upon the quasi-diode, by 1982 Cook and Frey [6] had incorporated many essential

features of the hydrodynamic model, coupled to the potential equation, in their

simulations. However, they did make the assumptions not made here, of vanishing

heat flux and negligible convective energy term. The former assumption, reducing

order, substantially alters the mathematical character of the energy equation in ad-

dition to its physical implications; these mathematical implications are manifested

principally in two or more dimensions, however. Other attempts to incorporate

energy and/or transport effects followed, based upon various models. Thus, the

foundation for the work of Tang [29] was the spectral method introduced by Strat-

ten [28], where a spherical harmonic expansion of the distribution function leads

. ... ... am l I nnlllnil um u i m B nnn •5



to momentum and energy relations similar to those subsequently derived for the

hydrodynamic model. Also, McAndrew, Singhal, and Heasell [171 employ a model

involving the momentum equation, but not the energy equation.

The models employed in [1], [23], 19], and [9] are virtually the same, with some

variations due to mobility-temperature representations, and the joint connection

with relaxation times and the Wiedemann-Franz law. The model in this paper is

the same as that of [9]. The numerical methods in this paper, however, are quite

different from those in previously reported work. Both the parametric regimes and

the iterative differencing schemes used in previous work were chiefly keyed to the el-

liptic or elliptic/parabolic classification of the underlying equations, in other words,

to what might loosely be characterized as the subsonic transport regime, where con-

centrations and velocities would not be expected to experience shock discontinuities.

In steady-state, the relevant "soundspeed" is V'KBT/rm, obtained by linearization of

the density-momentum subsystem. If the density-momentum-energy subsystem is

linearized, the traditional "soundspeed" of / T/m. is obtained, but this involves

the parabolic mode associated with the energy equation. The analysis of [9], in fact,

shows that a damped Newton method can be justified by energy type estimates in

the subsonic case. The shock capturing methods used herein have both the ad-

vantage of simulating broad parameter ranges, including transonic and supersonic

flow, as well as being readily extendible to two dimensions. Since, as noted by [1],

velocity overshoot is maximally exploited when cold carriers are injected at high

field, the simulation should have the capability of covering a broad temperature
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The above scheme can be extended from scalar equations to systems of con-

servation laws in many ways. We used the following version in our calculations [see

[25]].

Let ut + f(u). = 0 be the system. Then let 2 represent the Jacobian matrix

of the system.

The above system has a complete set of eigenvectors and there is a matrix U

such that:

U-"9 fU  A
=A

where A is a diagonal matrix.

Let c2  5kbT and b = and B Here,cisthe

3m- 3 =c 3 a7 2 2

velocity of sound waves in the electrons and in this connection we define the Mach

number of the fluid as M= -. For our system the above matrices are explicitly:
C

U =m m(v + )

(-cv + h) m, rn -)

1-B vb -b
1 (B - R) (b) 1( )

v-c 0 0"( c o)
A (, ij) = 0 V 0

0 0 V +C

In order to do the field by field decomposition of the fluxes we evaluate the U

matrix at the Roe average of uj and uj+l [see [21]].
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Let .+= uRoe(uj, uj+i) then we calculate

f(s) = LT-(%s+)f(s)

This gives us the components of the divided differences of the f in the direction

of the fields;then using the algorithm for scalar equation we calculate the flux for

each field. We use aj+ A(ij+ 1.) for each field. Then we transform back to the

original variables via:

fji+1 = U(duj+ . )f j+

This scheme will be r-th order accurate in space where r is the order of the

reconstructed polynomial Rj+1(x). To obtain high order accuracy in time, having

the ENO property, one may use the Runge-Kutta methods developed in [25]. How-

ever, since our primary interest here was in steady state calculations we used only

first order forward differencing in time. The resulting scheme would be unstable if

the stencils were fixed; the adaptivity stabilizes the linearly unstable method.

4. THERMAL EQUILIBRIUM

If we fix the bias voltage to be zer we expect the =y-tem to reach -n equilibrium

state where the temperature of the electron converges to the lattice temperature

and velocity to zero.

Under these assumptions the system will be simplified to

kbTn, = enfD

= e(n - flD)
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n,(O) n,(1) = 0

D 0) bT((0) ))bT n(1)

e n i  e n,

Note that we get the following relation:

n(x) = nie

If we let '(x) = -D(x) and L!2 = then the above system is equivalent to

the following non-linear boundary value problems:

{ 'Yxx -_ *()- nflD (,

IP = A i'() = no 0• rt(0) --- f(I)--0

y2n(n(x)), - n(x) = -n(,)
n,(0) = n.,(1) =o0

Rather than solving any of the above we choose the following initial conditions and

let the system evolve in time.

n(x,O) = nD(X) Z,(X,0) = 0 T(x,0) = To

The calculated solution contains the junction and its electric field. Also. the

density has to be used as initial condition for the rest of tho calculations. The

numerical results are presented in the numerical section.

5. PHYSICAL PARAMETERS OF THE DEVICE

The simulated device is a silicon MOSFET channcl. The device is an fl+ -n- +

junction of length one micron.

We use the following doping profile:

7?D(X)=5 x 101'c7.7-_ if 0< x<.25 or .75< x < 1
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nD(x) = 2 x 1O15 cm - 3  if .35 < x < .65

The two regions are connected by a properly scaled version of the following poly-

normial:

Q(x) = -5x' + 21x 5 - 35x 3 + 35x + 16.

We also use thea following conditions at the boundary:

• () =kbTl (n0))

Lb-ln(-"()
e n i

(1) = kbT ln(1)) + vbias(t)
e 7 i

n (O) = n (1) = 0 p (O) = p (1) = 0 w (O) = 11"(1) = 0

We use the following system of units:

Length : 10- 6m= lmicron Time : 10-123 = lpico secord

Alass : 10- 3 0 1g Potential : Volt Temperature : iKlrin

Energy : 10-1 8 J Charge " 10- 18 C Capacitance • 10-18F

In the above system of units the constants have the following values:

m = 0.26m, = .26 x .9109 po = 0.14 e = .1602 c, .1

kb = .138046 x i0- 4  ni = .014 e = 11.7 x 8.85418

6. NUMERICAL RESULTS

In the irst experiment we calculate the density of electrons under zero bias. The

result can be used for ,alculating the junction capacitance and voltage difference
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across the junction. Also we use the calculated density as the initial data for the

rest of the experiments.

From a numerical point of view this experiment can be used to test the accuracy

of the scheme. Since the velocity and current must go to zero, the difference can be

used as a measure of error.

In our experiment velocity and current converged to a small oscillatory sohition

around the zero value. Also we expect the oscillations in the velocity field to create

some difficulty for our numerical scheme since it could lead to differencing in the

wrong direction.

Indeed, this created spurious oscillations that were eliminated by a small mod-

ification in the ENO scheme. We restricted the movement of the stencil such that it

would interpolate across oscillations. This can be done in the following fashion. For

the sixth order ENO note that the ishift variable takes values between -5 and 1. We

simply forced it to be between -4 and 0. This procedure would create small oscilla-

tions across shocks, but one can use a modified version to overcome that difficulty.

In that version for updating ishift we use:

* A If?(i + ishift)l 1((1 + E)f'(j + ishift - 1)1 then ishift=ishift - 1,

,vbere E is of order of the truncation error of the scheme and positive or negative

depending on the value of ishift. This woulA make the choice of stencil biased

towards the center. In numerical calculations this modification led to a smoother

solution with fewer spurious oscillations.
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The results from the the experiment are shown in the fig 2-6. In figure 1 the

density of donors is shown for reference. As can be seen in figure 2 ,the electrons

from both sides expand into the channel. This creates electron waves which settle

down approximately in three pico seconds. The junction is formed and the electric

field over the junction is created. In figure 4 the steady state of the velocity is

shown. The amplitude of the oscillation indicates the size of the error in the rest of

the calculations.

In the next set of experiments we apply one volt at time zero and calculate the

evolution of the system in time. The system reaches steady state in approximately

five pico seconds. In figure 7 the current is shown as a function of time, and in

figures 8 and 9 the evolution of electric field and velocity are shown. In figures 10

and 11, for comparison, we duplicate the results obtained by [19], [9].

As an approximation to an I-V curve we apply a bias voltage in form of .

"ramp", Then we graph the calculated current versus voltage in figure 12. If th(

slope of the ramp is small it would be very close to an I-V curve. There is some

oscillation in the curve which is due to the jump in the derivative of the bias voltage.

If the slope of the ramp is small, it would disappear. In figures 13-17 we show the

evolution of the solution as the velocity is increased.

If the temperature of the lattice is raised the sound speed increases and the

Mach number becomes small. To test the scheme for small Mach number we set

the lattice temperature at 1000K. The evolution of velocity and temperature are

shown in the next two graphs.
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In the next experiment we set the lattice temperature to 50K. This would

reduce the sound speed . The results are given in figures 20-22. We emphasize that

we need to modify our choice of stencil to avoid oscillations across steep gradients

or shocks.

In the figures 23 and 24 we show just such a situation where the solution

develops a very sharp profile. The density and the velocity are shown here. The

shock capturing algorithm is designed to handle such situations.

In the next experiment we set our bias voltage to be a square wave and then a

sinusoidal wave. The results are shown in figures 25 -29.

In the last experiment we compare the calculated solutions in the steady state

using different orders of accuracy in the x variable. From extensive calculations we

found out that momentum is the most sensitive variable to error and comparison

of momentum would show errors that are not obvious in the other variables.

The calculated results show spurious oscillations for low order schemes that

(perhaps surprisingly) decrease with increasing order of acc iracy.

7. CONCLUSION

We presented a numerical scheme that is able to solve the Hydrodynamic model

efficiently and accurately.

The scheme was first order in time, but it can be extended to high orders of

accuracy using the Runge-Kutta methods developed in [25]. Also the high order

accuracy in space turned out to be essential at the junctions. The equations allow
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very steep gradients including discontinuous solutions, but there was no observation

of steady state shocks. However, if a large bias voltage is applied suddenly, shocks

form which dissappear in a short time.

There is current work under progress to extend the calculations to holes and

also to two spatial dimensions.

FIGURES

Fig 1: density of donors

Fig 2: velocity

zero bias, Time = 3, = - .2,Ax = .01

Fig 3: temperature

zero bias, Time = 3, AL = .2, Ax = .01

Fig 4: velocity in steady state

zero bias, Time - 3, -L = .2,Ax = .01

Fig 5: n - nD in steady state

zero bias, T = 5, A = .2 , Ax = .01

Fig 6: electric field in steady state

zero bias, Time = 3, L- = .2, A x = .01

Fig 7: Current vs. Time

v(t) = H(t), Time = 5, _ .2, zx = .01

Fig 8: electric field in time

v(t}=H(t), Time =5, AL .2, Ax=.01

Fig 9: velocity in time
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range, which suggests regions of transonic flow and complex behavior.

2. SYSTEM AND BOUNDARY CONDITIONS

The moment equations are specified, via the summation convention in three

dimensions, as

at(n) + ,),(nvi) = Cn

at(nj) + ,9,(nvjvj + pjj) = nFj + Cj jth component

,(n(I- V + ei)) +,).,(nv,(IV 2 + el) + pijvj + q) = nFivi + C.
2 2

where all of the terms have been defined except the forcing function F due to the

electric field.

The Poisson equation for the electrostatic potential, the first of the Maxwell

equations, is given in a one carrier, electron system by

EV 2 (D = e(n - riD)

where nD is the density of donors. Thus the forcing function F becomes:

F = eE= -eV%,
m m

to~~~~~nv2 -- 3nkT+ioy.Lttevco
We define P = mnv and w = mnel + - 2 - nkT + 'mnv2 . Let the vector

2 2

u = (n, P, w) denote, respectively, density, momentum, and energy of electrons. We

get the final form of our equations for electrons and electric potential as:

,)t(n) +,,(nvi) -- Cn
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,9tP 3 ) + O9. 1(Pivj + k6nT) = -enEj + Cp

,9t(w) + 8,9(vi(w + kbnT)) = -enviEi + C. + aj(Kn&jT)

CV2 p = e(n - flD)

We can write the equations in the compact form in (x, y, z) space as:

ut + fl(u). ± f 2 (u)q + f3(u)x = C(u) + G(u, D) + (0, 0, V(KnVT))

EV 2 I,1 = e(n - nD)

In this paper then we concentrate on solving the following system:

(la) 6D.. =e(n - nj), E = -4,

(1b) nt + (nv)x = 0,

P
Pt±+( Pv +kbnT) = -enE- P

i-p

wt + (vw + vkbnT), = -envE - w - 3 nkbTo + (inT,)x
7 w

with the following boundary conditions

D(0) = kbTln( n(O)
e n

= -ln((1)) + vbias(t)
e ni

u'(0) = uz(1) = 0.

This is an incompletely parabolic system, very similar to the Navier-Stokes

equations of compressible flow. Boundary conditions of this type for that system

have been discussed, e.g. in [10].
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3. NUMERICAL SCHEME

The numerical scheme is based on the essentially non-oscillatory shock captur-

ing algorithms developed in [11]. We use a sixth order stencil in space and forward

Sn an

Euler in time. Let 0 = u(j'Ax, nAt) = u(xj,t,). Also let D_ = - ) - ,
S n U n = jn i uj

D+0 ,and Doug = 2Az

Then using the above conventions we can write our scheme as:

(2a) eD+D_,V = e(ny - nD,)

(2b) E7 = -D 0  D

(2c) un + 1 -- u} n _At (f+ - i _) + AtC ' + AtGl + AtD_-(nD+ T)

We calculate the potential from the density and then we calculate the electric

field. We calculate the solution in the next time step from the electric field and the

"flux" calculated in the previous step.

The "flux" term, f , represents the numerical flux flowing into the jth

computational cell [see Lax [15]].

The finite difference scheme (2c) is an approximation of (1b) . The system (1b)

is a hyperbolic system of conservation laws with a right hand side which consists

of a viscosity term in the third equation, a lower order term and a non-local term

which comes from solving the elliptic equation for (D in terms of n and n.0 [see 9].

It is well known that solutions of a system of hyperbolic conservation laws de-

velop discontinuities after a finite time for general initial data. These discontinuties
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represent shocks and contact discontinuities. In the present problem, these may

be slightly smeared because of the (extremely small) viscous terms.There are ad-

ditional complications due to the stiffness of the source terms. Also these viscous

shocks can only appear if the Mach number exceeds one.

There has been a large amount of work in recent years towards developing high

resolution approximations of the numerical solution to these problems. Scheme!' of

the general type (2) are called shock capturing algorithms, since no special treatment

of the discontinuties is needed.

First order accurate difference schemes are generally nnsuitable for system.-

such as (1b) due to the extreme smearing of the steep gradients in the solution.

Classical second order accurate schemes, however, are generally unsuitable owing

to the spurious oscillations which they generate in the neighborhood of discontinu-

ities. Such oscillations are not only aesthetically undesirable but often lead to a

breakdown in the stability of the scheme and nonphysical effects such as negative

densities.

The feature of the classical schemes which leads to unwanted oscillations is that

they are based on a constant stencil. Moreover these schemes are linear whenever

the equations they approximate are linear. In the last fifteen years there has been

much work on overcoming such problems where the coefficients and the width of

the stencil depend on the current solution at each time step. Thus the schemes are

nonlinear even when the equations are linear. This is absoluteiy necessary [11j for

the properties of: both high order accuracy in the region of smoothness and the

10



absence of spurious overshoot and undershoots near discontinuities, to be valid.

The basic method we shall use here which has these desirable properties is

a modification of the essentially non-oscillatory (ENO) schemes developed in [11].

The key ideas are the following:

In each computational cell the data at t = t' are approximations to the cell

averages of the vector u, denoted by ul. From these cell averages a polynomial

approximation to u, of order r, is reconstructed in a nonlinear, adaptive fashion.

This will give us an r-th order accurate method. Values of u'+, for s near zero

are used in such a way as to minimize the likelihood that the stencil crosses over a

discontinuity. Finally the solution to this piecewise polynomial initial value problem

is computed approximately, keeping its non-oscillatory properties, and for tn+1 =

t" + At, At small, the solution is reaveraged over the cell yielding un+ 1

As an example, the approximate solution to the scalar equation ut = -u,

using a second order accurate ENO scheme is:

Sf(U n  nu +  juj-[( + s l - ) ( J-_ 'j-l( I1 - A))]

where A= At < Iand s' = M[A+UnAu,. for
x

m[x, y] = -H(xy) min(!x!, y)

where H is the Heaviside function .

The only difference between (2) and a conventional second order accurate ap-

proximation comes in the definition of the approximate slope s' which is a nonlinear

function of u" 4+, u_.

11



The scheme we are using here is a modified version of the scheme developed in

[11]. We use the pointwise scheme developed by Shu and Osher [25]. The scheme

for a scalar one dimensional conservation law is the following. Let the conservation

law be given by:

ut + f(u), = 0

We partition the x-t space into computational cells of the following type:

Then any conservative scheme can be written as [15]:

=I un At

where the fj_ represents the numerical flux flowing into the j-th computational

cell.

The fluxes can be computed in the following fashion as described in [25]. As-

suming that there is h(() such that:

f(u(x)) = I"- fI

then it follows that:

h(xj+4 .) - hx
AX

To calculate h(x) let:

H(x) = h(()d(

12



Then

H(xi ) = j+'h(()d(= - h(()d( = Ax f(u(xj))

The values of H(x) at the grid points can be calculated from the above and

then we use a polynomial interpolation with an adaptive stencil to reconstruct the

H(x) function.We call the reconstructed polynomial Rj+ (x). Then the flux can

be computed as:

+1= d R+~~

R(x) is constructed in the following way:

Let us define the following divided differences inductively and using the nota-

tion that f(j) = f(xj)

HO(j) = H(x+i+.)

H'(j) = -- (HO(i + 1) - HO(j))= fo(j)

= .1* (H-l(j + 1) -Y= H-7f?l(j)

We emphasize that there is no need to calculate the value of H or any of its

differences since everything can be calculated in terms of the divided differences of

f(u). To choose the suitable stencil for interpolation we calculate the Roe speed [21]

according to:

f(j + 1) - f(j)a j+ =uOj + 1) - uUj)

Let the variable ishift be the amount of shift of the stencil from the j-th grid point:

if aj+, > 0 ,then ishift = 0,

if a,+ 1 < 0 ,then ishift = 1.

13



then we compare the divided differences and we move the stencil according to

if If'(J + ishift) I> If (j + ishift - 1)1 then ishift=ishift - 1

We continue in this manner and let m=j+ishift; then the reconstructed poly-

nomial can be written as:

Rj+(x) = H°(m) + H(m)(x - x,, ) + H 2(m)(x - xm_)(x - Xm ) +...

The value of the flux can be calculated by evaluating the first derivative of R(x) at

x j+,.

The above scheme is known to contain nonphysical "expansion shock" solutions

occasionally. To remedy this case let us define a critical cell where f'(u) has a zero

in the interval I = [uj, uj+l]. These are the only cells that could contain expansion

shocks.

In a critical cell we use the following scheme:

Let a,+ maxi If'(u)l. Then define the following quantities forj - -- 1 <

s < j + r where r is the order of the scheme:

+ 2s ( S + aj+ 110)) f (s) = -(f (s) -)21 j~)

We do the reconstruction for f- using ishift = 1 and for f+ using ishift = 0.

The flux can be calculated as a sum of the flux moving to the right and the

flux moving to the left.

+
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v(t) = H(t), Time = 5, Ax= .2, = .01

Fig 10: comparison of velocity profile for

bias voltage 1., 1.5, 2.

Fig 11: comparison of temperature profile for

bias voltage 1., 1.5, 2.

Fig 12: Current vs. Voltage

v(t) = t, Time = 20, Z- - .1, Ax = .01
Ax

Fig 13: Evolution of density

v(t) = t, Time = 20, 't = .1.Ax = .01

Fig 14: Evolution of electric field

v(t) = t, Time = 20, 1 ==.Ax x=0

Fig 15: Evolution of temperature

v(t) = t, Time = 20. Lt- _1 Ax =.01

Fig 16: Evolution of velocity

v(t) = t, Time = 20, , 1 A"x = .01
,ax

Fig 17: Evolution of Mach number

v(t) = t, Time = 20, .1, Ax = .01
Ax

Fig 18: Velocity in time

v(t) = 2H(t), Time = 3, = .1, Ax = .01,T 0 = 1000K
AxI

Fig 19: evolution of temperature

v(t) = 2H(t), Time = 3, =.1, Ax = .01, To = 1000K

Fig 20: density in time
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v(t) = H(t), Time=4, AL .01,Ax = .01, To = 50K

Fig 21: evolution of mach number

v(t) = H(t), Time = 4, A = .01,Ax = .01.To = 50K

Fig 22: evolution of density

v(t) = H(t), Time = 4, AL = .01,Ax = .01,To = 50Kx

Fig 23: density in time

v(t) = 2H(t), Time = 1, -. 01 Ax .01, T0 = 50K

Fig 24: density

v(t) = 2H(t), Time = 1, .01,Ax .01, T 50KIr

Fig 25: Current vs. Time

v(t) = SQW(t), Time = 6, .1, Ax = .01. To = 300K

Fig 26: velocity in Time

c(t) = SQW(t), Time = 6, AL .1. Ax = .01 To = 300K

Fig 27: Current vs. Time

v(t) = 2sin(27rt), Time = 6, ,-,. .1, Ax = .01,To = 300KAr

Fig 28: density in time

v(t) = 2sin(27rt), Time = 5, _. = 1, Ax = .01,T 0 = 300K

Fig 29: temperature in time

v(t) = 2sin(27rt), Time = 5, - = .1, Ax = .01. Y = 300K

Fig 30: density, velocity, and momentum not to scale, third order stencil

Fig 31: density, velocity, and momentum not to scale. sixth ,rder stencil
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Fig 1: density of donors
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Time= 3 Bias Voltage =0

Fig 2: velocity

zero bias, Time - 3, - = .2, Az = .01

30



Time= 3 Bias Voltage =0

Fig 3: temperature

zero bias, Time - 3, At ,-= .2, A .01
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Fig 4: velocity in steady state

zero bias, Time =,- 31a = .21 Ax = .01
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Fig 5: n - nD in steady state

zero bias, T =5, AL .2, Ax = .01
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Electric Field
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Fig 6: electric field in steady state

zero bias, Time = 3, AL= .2, Ax .01
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Current vs. Time
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Fig 7: Current vs. Time

v() =H(t), Time =5,~ A-t .2,A =.0
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Timc= S Bias Voltage =

Fig 8: electric field in time

v(t) = H(t), Time =5, AL= .2, Ax .01
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Time= 5 Bias Voltage=

u1

Fig 9: velocity in time

v(t) H(t), Time =5, .2, Ax =.01
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Velocity
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Fig 10: comparison of velocity profile for

bias voltage 1., 1.5, 2.
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Evolution of Temperature
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Fig 19: evolution of temperature

v(t) = 2H(t), Time = 3, At .1, Ax = .01,To = 1000K
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Time= 4 Bias Voltage I

Fig 20: density in time

v(t) = H(t), Time = 4, At- = .01, Ax = oi, To =50K

48



Evolution of Mach Number
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Fig 21: evolution of mach number

v(t) = H(t), Time = 4, '= .01,z A =.01, T =50K
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x10 5  Evolution of Density
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Fig 22: evolution of density

v(t) = H(t), Time = 4, / t .01, Ax = .01, To = 50K
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Time=1I Bias Votage =2

Fig 23: density in time

v(t) = 2H(i), Time 1, .01,Ax=.01, To=50K

51



4.5-

4

3.5

3-

2.5-

2-

1.5

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
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vO(t) = 2H(t), Time =1, ~ OX .1T 0
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Current vs. Time
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Fig 25: Current vs. Time

v(t) = SQW(t), Time =6, & 1 Zx=.1 70=30
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Time= 6 Bias Voltage = 1

Fig 26: velocity in Time

v(t) = SQW(t), Time = 6, AL 1 Ax =.01,To 300K
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Temperature
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Fig 11: comparison of temperature profile for

bias voltage 1., 1.5, 2.
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Current vs. Voltage
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Fig 12: Current vs. Voltage

v(t) = t, Time = 20, . Ax = .01
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X10 5  Evolution of Density
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Fig 13: Evolution of density

v(t) = t, Time = 20, AI=.1, Ax = .01
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Evolution of Electric Field
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Fig 14: Evolution of electric field
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X 10 4  Evolution of Temperature
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Fig 15: Evolution Of temperature

v(t) =t, Time = 20, AL = .1, Ax =.01
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Evolution of Velocity
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Evolution of Mach Number
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Time= 3 Bias Voltage =2

Fig 18: Velocity in time

v(t) = 2H(t), Time 3, =At- ~ .O, 0 =0
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Current vs. Time
5000

4000-

3000-

2000-

1000

o 0

-1000-

-2000-

-3000-

-4000

-50001
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

pico second

Fig 27: Current vs. Time

v(t) =2sin(27ri), Time =6, Al = .1, Ax =.01, To 300K
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Time= 5 Bias Voltage =2

(09

Fig 28: density in time

v(t) = 2sin(27rt), Time =5, AL= .1, Ax .01, To 300K

56



Time= 5 Bias Voltage =2

Fig 29: temperature in time

v(t) = 2 sin(27rt), Time 5, &t Ax ,Lz.O1T 0 O
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Fig 30: density, velocity, and momentum not to scale, third order stencil
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X105 Sixth order ENO
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Fig 31: density, velocity, and momentum not to scale, sixth order stencil

59



NASA Report Documentation Page

1. Report No. 2. Government Accession No. 3. Recipient's Catalog No.
NASA CR- 181886
ICASE Report No. 89-52

4. Title and Subtitle 5. Report Date

SOLUTION OF THE HYDRODYNAMIC DEVICE MODEL USING HIGH- July 1989
ORDER NON-OSCILLATORY SHOCK CAPTURING ALGORITHMS 6. Performing Organization Code

7. Author(s) 8. Performing Organization Report No.

Emad Fatemi 89-52
Joseph Jerome 10. Work Unit No.
Stanley Osher

9. Performing Organization Name and Address 505-90-21-01
Institute for Computer Applications in Science and 11. Contract or Grant No.

Engineering
Mail Stop 132C, NASA Langley Research Center NASl-18605
Hampton, VA 23665-5225 13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address
National Aeronautics and Space Administration Contractor Report
Langley Research Center 14. Sponsoring Agency Code
Hampton, VA 23665-5225

15. Supplementary Notes
Langley Technical Monitor: Submitted to IEEE Transactions on
Richard W. Barnwell Computer Audeo Design of Integrated

Systems and Circuits

Final Report

16. Abstract

A micron n+ - n - n+ silicon diode is simulated via the hydrodynamic model
for carrier transport. The numerical algorithms employed are for the non-steady
case, and a limiting process is used to reach steady state. The novelty of our
simulation lies in the shock capturing algorithms employed, and indeed shocks,
or very rapid transition regimes, are observed in the transient case for the
coupled system, consisting of the potential equation and the conservation equations
describing charge, momentum, and energy transfer for the electron carriers. These
algorithms, termed essentially non-oscillatory, have been successfully applied in
other contexts to model the flow in gas dynamics, magnetohydrodynamics and other
physical situatidns involving the conservation laws in fluid mechanics. The method
here is first order in time, but the use of small time steps allows for good
accuracy. Runge-kutta mehtods allow one to achieve higher accuracy in time if
desired. The spatial accuracy is of high order in regions of smoothness.

17. Key Words (Suggested by Author(sll 18. Distribution Statement

device model, shock capturing, 59 - Mathematics and Computer
non-oscillatory Sciences (General)

64 - Numerical Analysis

Unclassified - Unlimited
19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of pages 22. Price

Unclassified Unclassified 61 A04

NASA FORM 1626 OCT 86

NASA-Laiiglev, 1989


